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Abstract. A recently developed renormalization approach is used to study the electron-phonon coupling in
many-electron systems. By starting from an Hamiltonian which includes a small gauge symmetry breaking
field, we directly derive a BCS-like equation for the energy gap from the renormalization approach. The
effective electron-electron interaction for Cooper pairs does not contain any singularities. Furthermore, it
is found that phonon-induced particle-hole excitations only contribute to the attractive electron-electron
interaction if their energy difference is smaller than the phonon energy.

PACS. 71.10.Fd Lattice fermion models – 74.20.Fg BCS theory and its development

1 Introduction

The famous BCS-theory [1] of superconductivity is es-
sentially based on the analysis of attractive interactions
between electrons of many-particle systems [2]. As was
pointed out by Fröhlich [3] such an interaction can re-
sult from an effective coupling between electrons mediated
via phonons. The recent discovery of superconductivity in
magnesium diboride MgB2 [4] below a rather high Tc of
about 39 K has attracted again a lot of interest on this
classical scenario of a phonon-mediated superconductiv-
ity. However, the electron-electron interaction derived by
Fröhlich [3] contains some problems. There are certain re-
gions in momentum space where the attractive interaction
becomes singular and changes its sign due to a vanishing
energy denominator.

Recently, effective phonon-induced electron-electron
interactions were also derived [5,6] by use of Wegner’s
flow equation method [7] and by a similarity renormal-
ization proposed by Glatzek and Wilson [8,9]. The main
idea of these approaches is to perform a continuous uni-
tary transformation which leads to an expression for an
effective electron-electron interaction which is less singu-
lar than Fröhlich’s result [3].

Recently, we have developed a renormalization ap-
proach which is based on perturbation theory [10]. This
approach resembles Wegner’s flow equation method [7]
and the similarity renormalization [8,9] in some as-
pects. Therefore, the investigation of an effective phonon-
induced electron-electron interaction is very useful to com-
pare the three methods in more details. Therefore, in
this paper we directly diagonalize the classical problem of
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interacting electrons and phonons by use of the new renor-
malization technique [10]. The Hamiltonian is given by

H =
∑
k,σ

εk c†k,σck,σ +
∑
q

ωq b†qbq

+
∑
k,q,σ

(
gq c†k,σc(k+q),σb†q + g∗q c†(k+q),σck,σbq

)
, (1)

which will be used to describe superconducting proper-
ties. In (1) c†k,σ and ck,σ are the usual creation and an-
nihilation operators for electrons with wave vector k and
spin σ. b†q and bq denote phonon operators with phonon
energies ωq. The electron excitation energies εk are mea-
sured from the chemical potential µ.

The paper is organized as follows. In the next section
we briefly repeat our recently developed renormalization
approach [10]. In Section 3 this approach will be applied
to the electron-phonon system (1) in order to derive a
BCS-like gap equation. Furthermore, effective electron-
electron interaction derived in this framework will be com-
pared with the results from former approaches [3,5,6]. Fi-
nally, our conclusions are presented in Section 4.

2 Projector-based renormalization method
(PRM)

The PRM [10] starts from the decomposition of a
given many-particle Hamiltonian H into an unperturbed
part H0 and into a perturbation H1

H = H0 + εH1 =: H(ε). (2)
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We assume that the eigenvalue problem H0|n〉 = E
(0)
n |n〉

of the unperturbed part H0 is known. The parameter ε
accounts for the order of perturbation processes discussed
below. Let us define projection operators Pλ and Qλ by

PλA =
∑

|E(0)
n −E

(0)
m |≤λ

|n〉〈m| 〈n|A|m〉 and (3)

Qλ = 1− Pλ. (4)

Pλ and Qλ are super-operators acting on usual opera-
tors A of the unitary space. Here, Pλ projects on that part
of A which is formed by all transition operators |n〉〈m|
with energy differences |E(0)

n − E
(0)
m | less or equal to a

given cutoff λ. The cutoff λ is smaller than the cutoff Λ of
the original Hamiltonian H. Qλ is orthogonal to Pλ and
projects on high energy transitions larger than λ.

The aim is to transform the initial Hamiltonian H into
an effective Hamiltonian Hλ which has no matrix elements
between eigenstates of H0 with energy differences larger
than λ. Hλ will be constructed by use of an unitary trans-
formation

Hλ = eXλ H e−Xλ . (5)

Due to construction the effective Hamiltonian Hλ will
therefore have the same eigenspectrum as the original
Hamiltonian H. The generator Xλ of the transformation is
anti-Hermitian, X†

λ = −Xλ. To find an appropriate gen-
erator Xλ we use the condition that Hλ has no matrix
elements with transition energies larger than λ, i.e.,

QλHλ = 0 (6)

has to be fulfilled. By assuming that Xλ can be written
as a power series in the perturbation parameter ε

Xλ = εX
(1)
λ + ε2X

(2)
λ + ε3X

(3)
λ + . . . (7)

the effective Hamiltonian Hλ can be expanded in a power
series in ε as well

Hλ = H0 + ε
{
H1 +

[
X

(1)
λ ,H0

]}
+ ε2

{[
X

(1)
λ ,H1

]
+

[
X

(2)
λ ,H0

]
+

1
2!

[
X

(1)
λ ,

[
X

(1)
λ ,H0

]]}
+ O(ε3). (8)

Now, the high-energy parts parts QλX
(n)
λ of X

(n)
λ can

successively be determined from equation (6) whereas the
low-energy parts PλX

(n)
λ can still be chosen arbitrarily. In

the following we use for convenience PλX
(1)
λ = PλX

(2)
λ =

0 so that for the effective Hamiltonian Hλ up to second
order in H1 follows

Hλ = H0 + PλH1 − 1
2
Pλ

[
(QλH1),

1
L0

(QλH1)
]

− Pλ

[
(PλH1),

1
L0

(QλH1)
]

. (9)

Here ε was set equal to 1. The quantity L0 in (9) denotes
the Liouville operator of the unperturbed Hamiltonian. It
is defined by L0 = [H0, A] for any operator A. Note that
the perturbation expansion (9) can easily be extended to
higher orders in ε. One should also note that the correct
size dependence of the Hamiltonian is automatically guar-
anteed due to the commutators appearing in (9).

Next, let us use this perturbation theory to establish
a renormalization approach by successively reducing the
cutoff energy λ. In particular, instead of eliminating high-
energy excitations in one step a sequence of stepwise trans-
formations is used. Thereby, we obtain an effective model
which becomes diagonal in the limit λ → 0. In an infinites-
imal formulation, the method yields renormalization equa-
tions as function of the cutoff λ. To find these equations
we start from the renormalized Hamiltonian

Hλ = H0,λ + H1,λ (10)

after all excitations with energy differences larger than λ
have been eliminated. Now we perform an additional
renormalization of Hλ by eliminating all excitations in-
side an energy shell between λ and a smaller energy cut-
off (λ−∆λ) where ∆λ > 0. The new Hamiltonian is found
by use of (9)

H(λ−∆λ) = P(λ−∆λ)Hλ

− 1
2
P(λ−∆λ)

[
(Q(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

− P(λ−∆λ)

[
(P(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

. (11)

Here, L0,λ denotes the Liouville operator with respect to
the unperturbed part H0,λ of the λ dependent Hamil-
tonian Hλ. Note that the flow equations derived from
equation (11) will lead to an approximative renormaliza-
tion of Hλ because only contributions up to second order
in H1,λ are included in equation (11). For a concrete eval-
uation of equation (11) it is useful to divide the second
order term on the r.h.s into two parts: The first one con-
nects eigenstates of H0,λ with the same energy. This part
commutes with H0,λ and can therefore be considered as
renormalization of the unperturbed Hamiltonian

H0,(λ−∆λ) −H0,λ =

− 1
2

P0

[
(Q(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

. (12)

In contrast the second part connects eigenstates of H0,λ

with different energies and represents a renormalization of
the interaction part of the Hamiltonian

H1,(λ−∆λ) − P(λ−∆λ)H1,λ =

− P(λ−∆λ)

[
(P(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

− 1
2

(
P(λ−∆λ) − P0

)
×

[
(Q(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

. (13)
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Note that for small ∆λ only the mixed term, i.e., the
first part on the r.h.s. of equation (13), contributes to the
renormalization of H1,λ

H1,(λ−∆λ) − P(λ−∆λ)H1,λ ≈

− P(λ−∆λ)

[
(P(λ−∆λ)H1,λ),

1
L0,λ

(Q(λ−∆λ)H1,λ)
]

. (14)

In the limit ∆λ → 0, i.e. for vanishing shell width, equa-
tions (12) and (14) lead to differential equations for the
Hamiltonian as function of the cutoff energy λ. The re-
sulting equations for the parameters of the Hamiltonian
are called flow equations. Their solution depends on the
initial values of the parameters of the Hamiltonian. Note
that for λ → 0 the resulting Hamiltonian only consists of
the unperturbed part H(λ→0) so that an effectively diag-
onal Hamiltonian is obtained.

3 Application to the electron-phonon system

In this section we apply the renormalization approach dis-
cussed above to the system (1) of interacting electrons
and phonons. The aim is to decouple the electron and
the phonon subsystems. The Hamiltonian (1) is gauge in-
variant. In contrast, a BCS-like Hamiltonian breaks this
symmetry. Thus, in order to describe the superconducting
state of the system, the renormalized Hamiltonian should
contain a symmetry breaking field. Therefore, our starting
Hamiltonian Hλ reads

Hλ = H0,λ + H1,λ, (15)

after all excitations with energies larger than λ have been
eliminated, where

H0,λ =
∑
k,σ

εk c†k,σck,σ +
∑
q

ωq b†qbq

−
∑
k

(
∆k,λ c†k,↑c

†
−k,↓ + ∆∗

k,λ c−k,↓ck,↑
)

+ Cλ, (16)

H1,λ = PλH1

= Pλ

∑
k,q,σ

(
gq c†k,σc(k+q),σb†q + g∗q c†(k+q),σck,σbq

)
.

(17)

The ‘fields’ ∆k,λ and ∆∗
k,λ in H0,λ couple to the op-

erators c†k,↑c
†
−k,↓ and c−k,↓ck,↑ and break the gauge

invariance. They will take over the role of the supercon-
ducting gap function but still depend on λ. The initial
values for ∆k,λ and the energy shift Cλ are those of the
original model

∆k,(λ=Λ) = 0, C(λ=Λ) = 0. (18)

Note that renormalization contributions to the electron
energies εk, the phonon energies ωq, and the electron-
phonon interactions gq have been neglected in (15). Also,

additional interactions which would appear due to renor-
malization processes have been omitted. Let us first solve
the eigenvalue problem of H0,λ. For this purpose, we
perform a Bogoliubov transformation [11] and introduce
new λ dependent fermionic quasi-particles

α†
k,λ = u∗

k,λc†k,↑ − v∗k,λc−k,↓, (19)

β†
k,λ = u∗

k,λc†−k,↓ + v∗k,λck,↑

where

|uk,λ|2 =
1
2


1 +

εk√
ε2
k + |∆k,λ|2


 , (20)

|vk,λ|2 =
1
2


1 − εk√

ε2
k + |∆k,λ|2


 ·

H0,λ can be rewritten as

H0,λ =
∑
k

Ek,λ

(
α†

k,λαk,λ + β†
k,λβk,λ

)

+
∑
k

(εk − Ek,λ) +
∑
q

ωq b†qbq + Cλ (21)

where the fermionic excitation energies are given by

Ek,λ =
√

ε2
k + |∆k,λ|2.

Next let us eliminate all excitations within the energy
shell between λ and (λ − ∆λ) by applying the renormal-
ization scheme of Section 2. We are primarily interested in
the renormalization of the gap function ∆k,λ. Note that
for this case we have to consider the renormalization con-
tribution given by (14)

δH1(λ, ∆λ) := H1,(λ−∆λ) − P(λ−∆λ)H1,λ. (22)

The reason is that the renormalization (12) of H0,λ only
gives contributions which connects eigenstates of H0,λ

with the same energy. Thus, this part only changes the
quasiparticle energies from Ek,λ to Ek,(λ−∆λ). In contrast,
the renormalization (22) changes the relative weight of the
operator terms in (16) and is exactly the renormalization
needed to describe the flow of ∆k,λ which will be discussed
in the following.

There is no principle problem to evaluate the renor-
malization contributions (14). First, one expresses the
creation and annihilation operators by the quasiparti-
cle operators (19) and uses the relation L0,λα†

k,λ =
Ek,λα†

k,λ and an equivalent relation for β†
k,λ to evaluate

the denominator in equation (14). Then the quasi-particle
operators (18) have to be transformed back to the original
electron operators. The main reason for this procedure is
the fact that the Bogoliubov transformation (19, 20) de-
pends on the cutoff λ. Thereby, a lot of terms arise which
contribute to the renormalization (14). For convenience,
we evaluate the denominator in equation (14) by use of
the assumption ε2

k � |∆k,λ|2. As it turns out, the result-
ing flow equations still contain sums over k. Note that the
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δH1(λ, ∆λ) = −P(λ−∆λ)

∑
k,k′,q,σ,σ′

|gq|2 δΘk,q(λ,∆λ)Θ
[
(λ − ∆λ) − ∣∣εk′ − ε(k′+q) + ωq

∣∣]
εk − ε(k+q) + ωq

×
{

c†(k+q),σck,σc†k′,σ′c(k′+q),σ′ + h.c
}

. (26)

approximation used is valid for most of the k dependent
terms (except for those k values close to the Fermi mo-
mentum). Thus, it does not strongly affected the renor-
malization contributions. The two operator expressions
contributing to the commutator in (14) are given in this
approximation by

P(λ−∆λ)H1,λ =
∑
k,q,σ

Θ
[
(λ − ∆λ) − ∣∣εk − ε(k+q) + ωq

∣∣]

×
{
gq c†k,σc(k+q),σb†q + h.c.

}
, (23)

1
L0,λ

Q(λ−∆λ)H1,λ =
∑
k,q,σ

δΘk,q(λ, ∆λ)
εk − ε(k+q) + ωq

×
{
gq c†k,σc(k+q),σb†q − h.c.

}
(24)

where

δΘk,q(λ, ∆λ) = Θ
[∣∣εk − ε(k+q) + ωq

∣∣ − (λ − ∆λ)
]

− Θ
[∣∣εk − ε(k+q) + ωq

∣∣ − λ
]

(25)

describes the restriction to excitations on the energy
shell ∆λ. We are not interested in the renormalization of
the phonon modes. Therefore all contributions including
phonon operators are neglected. By using (23) and (24)
we then find from (14)

see equation (26) above

In the following we restrict ourselves to renormaliza-
tion contributions which lead to the formation of Cooper
pairs. Consequently, the conditions k′ = −(k + q) and
σ′ = −σ have to be fulfilled so that

− lim
∆λ→0

δH1(λ, ∆λ)
∆λ

=

∑
k,q,σ

Θ
[
λ − 2

∣∣εk − ε(k+q)

∣∣] Θ
[
λ − ∣∣ε(k+q) − εk + ωq

∣∣]
× δ

(∣∣εk − ε(k+q) + ωq

∣∣ − λ
)

× |gq|2
εk − ε(k+q) + ωq

{
c†(k+q),σc†−(k+q),−σc−k,−σck,σ + h.c

}
(27)

results from (26). Here, Θ
[
λ − 2

∣∣εk − ε(k+q)

∣∣] is due to
the projector operator P(λ−∆λ) in (26). Note that the dif-
ferential expression on the l.h.s. of (27) is different from
the differential dH1,λ/dλ. This follows from the defini-
tion of δH1(λ, ∆λ) = H1,(λ−∆λ) − P(λ−∆λ)H1,λ which

differs from ∆H1(λ, ∆λ) = H1,(λ−∆λ) − H1,λ due to the
second term. Next we can simplify the Θ-functions in
equation (27) by discussing εk ≥ ε(k+q) and ε(k+q) > εk

separately. There are no contributions from the latter case.
For εk ≥ ε(k+q) the contribution from the first term in the
curly bracket in (27) and from its conjugate can be com-
bined. By exploiting the Θ-functions the result can be
rewritten as

− lim
∆λ→0

δH1(λ, ∆λ)
∆λ

=
∑
k,q,σ

δ
(∣∣εk − ε(k+q)

∣∣ + ωq − λ
)

× |gq|2 Θ
[
ωq − ∣∣εk − ε(k+q)

∣∣]∣∣εk − ε(k+q)

∣∣ + ωq

× c†(k+q),σc†−(k+q),−σc−k,−σck,σ.

(28)

Here, we have assumed gq = g−q. Equation (28) describes
the renormalization of the λ dependent Hamiltonian Hλ

with respect to the cutoff λ. Next we use (28) to derive
flow equations for the parameters ∆k,λ and Cλ. For this
purpose, a factorization with respect to the full Hamilto-
nian H is carried out. The final flow equations read

d∆k,λ

dλ
= −2

∑
q

δ
(∣∣εk − ε(k+q)

∣∣ + ωq − λ
)

× |gq|2 Θ
[
ωq − ∣∣εk − ε(k+q)

∣∣]∣∣εk − ε(k+q)

∣∣ + ωq

〈
c−(k+q),↓c(k+q),↑

〉
, (29)

dCλ

dλ
=

∑
k

〈
c†k,↑c

†
−k,↓

〉 d∆k,λ

dλ
· (30)

Note that in contrast to (28), equations (29) and (30)
are differential equations with normal derivatives of ∆k,λ

and Cλ. This fact can be explained as follows: As
discussed above, the difference between the expres-
sions δH1(λ, ∆λ) = H1,(λ−∆λ) − P(λ−∆λ)H1,λ and
∆H1(λ, ∆λ) = H1,(λ−∆λ) − H1,λ is given by the quan-
tity Q(λ−∆λ)H1,λ which consists of all matrix elements
of H1,λ between eigenstates of H0,λ with energy differ-
ences between (λ − ∆λ) and λ. We are interested in the
new Hamiltonian H(λ−∆λ) = P(λ−∆λ)H(λ−∆λ) which only
contains transition operators between states with energy
differences smaller than (λ−∆λ). Therefore, all renormal-
ization contributions which lead to matrix elements with
energy differences larger than (λ − ∆λ) are not relevant.
Thus, we obtain differential equations for the parameters
of H(λ−∆λ).

Note that the factor 2 in front of (29) is due to the
sum over σ in (28). The expectation values 〈. . . 〉 in (29)
and (30) are formed with the full Hamiltonian H and are
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independent of λ. The flow equations can be easily inte-
grated between the lower cutoff (λ → 0) and the cutoff Λ
of the original model. The result is

∆̃k = ∆k,Λ + 2
∑
q

|gq|2 Θ
[
ωq − ∣∣εk − ε(k+q)

∣∣]∣∣εk − ε(k+q)

∣∣ + ωq

× 〈
c−(k+q),↓c(k+q),↑

〉
, (31)

C̃ = CΛ +
∑
k

〈
c†k,↑c

†
−k,↓

〉 (
∆̃k − ∆k,Λ

)
(32)

where a short hand notation for the desired values of ∆k,λ

and Ck,λ at λ = 0 was introduced: ∆̃k = ∆k,(λ→0), C̃ =
C(λ→0). Note that ∆̃k and C̃ only depend on the param-
eters of the original system (1) and on ∆k,Λ and CΛ. The
initial conditions (18) for ∆k,Λ and CΛ will be used later.
For λ → 0 the renormalized Hamiltonian H̃ = H(λ→0)

reads

H̃ =
∑
k,σ

εk c†k,σck,σ +
∑
q

ωq b†qbq

−
∑
k

(
∆̃k c†k,↑c

†
−k,↓ + ∆̃∗

k c−k,↓ck,↑
)

+ C̃. (33)

H̃ can easily be diagonalized by a Bogoliubov transforma-
tion according to (19) and (20)

H̃ =
∑
k

Ẽk

(
α̃†

kα̃k + β̃†
kβ̃k

)
+

∑
k

(
εk − Ẽk

)

+
∑
q

ωq b†qbq + C̃ (34)

where Ẽk = Ek,(λ→0), α̃k = αk,(λ→0), and β̃k = βk,(λ→0).

Finally, we have to determine the expectation val-
ues in (31) and (32). Since H̃ emerged from the original
model H by an unitary transformation, the free energy
can be calculated either from H or from H̃

F = − 1
β

ln Tr e−βH = − 1
β

ln Tr e−βH̃,

= − 2
β

∑
k′

ln
(
1 + e−βẼk′

)
+

1
β

∑
q

(
1 − e−βωq

)
+

∑
k′

(
εk′ − Ẽk′

)
+ C̃ (35)

where (34) was used. The required expectation values are
found by functional derivative

〈
c†k,↑c

†
−k,↓

〉
= − ∂F

∂∆k,Λ

=
∑
k′

1 − 2f(Ẽk′)

2

√
ε2
k′+

∣∣∣∆̃k′

∣∣∣2
[
∆̃∗

k′
∂∆̃k′

∂∆k,Λ
+∆̃k′

∂∆̃∗
k′

∂∆k,Λ

]
+

∂C̃

∂∆k,Λ

=
∆̃∗

k

[
1 − 2f(Ẽk)

]
2

√
ε2
k +

∣∣∣∆̃k

∣∣∣2
+ O


[

|gq|2∣∣εk − ε(k+q)

∣∣ + ωq

]2

 .

(36)

Here, f(Ẽk) denotes the Fermi function with respect to
the energy Ẽk. If we neglect higher order corrections,
equations (31) and (32) can be rewritten as

∆̃k =
∑
q

{
2 |gq|2 Θ

[
ωq − ∣∣εk − ε(k+q)

∣∣]∣∣εk − ε(k+q)

∣∣ + ωq

}

×
∆̃∗

k+q

[
1 − 2f(Ẽk+q)

]
2

√
ε2
k+q +

∣∣∣∆̃k+q

∣∣∣2
, (37)

C̃ =
∑
k

∣∣∣∆̃k

∣∣∣2 1 − 2f(Ẽk+q)

2

√
ε2
k+q +

∣∣∣∆̃k+q

∣∣∣2
(38)

where the initial conditions (18) were used. Note that
equation (37) has the form of the usual BCS-gap equa-
tion. Thus, the term inside the brackets {. . . } can be in-
terpreted as the absolute value of the effective phonon-
induced electron-electron interaction

Vk,q = −2 |gq|2 Θ
[
ωq − ∣∣εk − ε(k+q)

∣∣]∣∣εk − ε(k+q)

∣∣ + ωq

(39)

for the formation of Cooper pairs. In contrast to the
usual BCS-theory, in the present formalism both the
attractive electron-electron interaction (39) and the gap
equation (37) were derived in one step by applying
the renormalization procedure to the electron-phonon
system (1).

Let us now compare the induced electron-electron in-
teraction (39) with Fröhlich’s result [3]

V Fröhlich
k,q =

2 |gq|2 ωq[
εk − ε(k+q)

]2 − ω2
q

· (40)

Note that (40) contains a divergency at |εk − ε(k+q)| =
ωq. Furthermore, this interaction becomes repulsive
for

∣∣εk − ε(k+q)

∣∣ > ωq. Thus, a cutoff function
Θ

[
ωq − ∣∣εk − ε(k+q)

∣∣] for the electron-electron interac-
tion (40) is introduced by hand in the usual BCS-theory
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to suppress repulsive contributions to this interaction. In
contrast our result (39) has no divergency and is always at-
tractive. Furthermore, the cutoff function in equation (39)
shows that the attractive interaction results from particle-
hole excitations with energies |εk − ε(k+q)| < ωq. This
result directly follows from the renormalization process.

Recently, Mielke [6] obtained a λ-dependent phonon-
induced electron-electron interaction

V Mielke
k,q,λ = − 2 |gq|2∣∣εk − ε(k+q)

∣∣ + ωq

Θ(|εk+q − εk| + ωq − λ)

(41)
where in (41) for convenience the λ-dependence of the elec-
tron and the phonon energies is suppressed. Apart from
the λ-dependent Θ-function, the main difference to our re-
sult (39) is that the cutoff function Θ

[
ωq − ∣∣εk − ε(k+q)

∣∣]
is not present in (41). This difference may result from
Mielke’s way of performing the similarity transforma-
tion [8,9] of the electron-phonon system (1). The sim-
ilarity transformation is based on the introduction of
continuous unitary transformations and is formulated in
terms of differential equations for the parameters of the
Hamiltonian. Like in our approach (see Sect. 2) also
the similarity transformation leads to a band-diagonal
structure of the normalized Hamiltonian with respect
to the eigen representation of the unperturbed Hamil-
tonian. Due to the renormalization processes also new
couplings occur. Mielke has first evaluated the phonon-
induced electron-electron interaction (41) by eliminating
excitations with energies larger than λ. In particular, for
an Einstein model with dispersion-less phonons of fre-
quency ω0 the interaction becomes independent of λ if λ
is chosen less than ω0. Of course, for this case and as-
suming |εk+q − εk| < ωq Mielke’s result (41) and the re-
sult (39) become the same. Keeping this interaction and
neglecting at the same time the remaining part of the
electron-phonon interaction with energies smaller than λ a
BCS-like gap equation was derived by Mielke [6]. The main
difference to our result (39) is the absence of the cutoff-
function Θ

[
ωq − ∣∣εk − ε(k+q)

∣∣], which demonstrates that
only particle-hole excitations with energies less than ωq

participate in the attractive interactions. However, note
that by setting λ = 0 a finite value of the interaction
remains in (41). This interaction is non-diagonal in the
unperturbed Hamiltonian as used by Mielke, HMielke

0,λ =∑
k,σ εk,λc†k,σck,σ +

∑
q ωqb†qbq. This seems to be a con-

tradiction to the allowed properties for operators at λ = 0
which should commute with the unperturbed Hamilto-
nian.

Finally, by use of Wegner’s flow equation method [7],
Lenz and Wegner obtained the following phonon-induced
electron-electron interaction

V Lenz/Wegner

k,q = − 2 |gq|2 ωq[
εk − ε(k+q)

]2 + ω2
q

(42)

which is attractive for all k and q [5]. The result (42)
is similar to (40) if ωq ≥ ∣∣εk − ε(k+q)

∣∣ is fulfilled. In

contrast to our result (39), the interaction (42) remains
finite even for

∣∣εk − ε(k+q)

∣∣ > ωq. Wegner’s flow equation
method [7] as well as the similarity transformation [8,9]
are based on the introduction of continuous unitary trans-
formations. Both methods are formulated in terms of dif-
ferential equations for the parameters of the Hamiltonian.
However, they differ in the generator of the continuous
unitary transformation. This leads to the different re-
sults (41) and (42). A detailed comparison of the flow
equation method and the similarity transformation can
be found in reference [6].

4 Conclusion

In this paper we have applied a recently developed renor-
malization approach [10] to the ‘classical’ problem of in-
teracting electrons and phonons. By adding a small field
to the Hamiltonian, which break the gauge symmetry, we
directly derive a BCS-like gap equation for the coupled
electron-phonon system. In particular, it is shown that the
derived gap function results directly from the renormal-
ization process. The effective phonon-induced electron-
electron interaction is deduced from the gap equation. In
contrast to the Fröhlich interaction [3] no singularities ap-
pear in the effective interaction. Furthermore, the cutoff
function which is included in Fröhlich’s result by hand
to avoid repulsive contributions to the electron-electron
interaction follows directly from the renormalization pro-
cedure. This means that phonon-induced particle-hole
excitations only contribute to the attractive electron-
electron interaction if their energies are smaller than the
energy of the exchanged phonon.
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DFG through the research program SFB 463.

References

1. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108,
1175 (1957)

2. L.N. Cooper, Phys. Rev. 104, 1189 (1956)
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